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Outline

• Brief introduction to fuel cells
• Direct Methanol Fuel Cells

– Anode mechanisms → mixed metal catalysts
• X-ray spectroscopy primer
• EXAFS and XANES of operating liquid feed DMFC

– Experimental challenges
– Selection of potential window for experiments
– Analysis of XANES and EXAFS
– Lattice parameter analysis of catalysts

• Conclusions



October 20, 2006 - NSLS

Types of Fuel Cells

Alkali Fuel Cell 
(AFC)
@60oC

Phosphoric Acid 
Fuel Cell (PAFC)

Molten Carbonate 
Fuel Cell (MCFC) 

@600ºC

Solid Oxide 
Fuel Cell (SOFC) 

@1000ºC

Hydrogen/air 
Fuel Cell 

(PEMFC) @60-100ºC

Liquids in a matrix Polymer electrolytes Ceramics and molten salts

Direct Methanol
Fuel Cell
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crossover

CO2 + H2O
+MeOH

Graphite
flow field

Carbon Paper
Diffusion Layer

Carbon Cloth
Gas Diffusion

Layer

Air

Air
Compressor

ISCO Pump

Pure MeOH

Gear Pump

DI Water

H2O, N2, O2
CO2 from crossover

DMFC Schematics

Anode : CH3OH + H2O → 6H+ + CO2 +  6e- Eºanode = 0.016V
Cathode : 1.5O2 + 6H+ + 6e- → 3H2O Eºcathode = 1.23V
Overall reaction : CH3OH + 3/2O2 → CO2 + 2H2O Eºcell = 1.214V
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Fuel Cell Voltage/Current Characteristics
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Ref. Fuel cell Handbook (6th Ed.) by EG&G Technical Services, Inc
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Major DMFC issues

• Electrocatalyst
– Anode 

- Methanol oxidation rate using Pt alloys is sluggish 
- CO tolerance of Pt alloys is poor

– Cathode
- Oxygen reduction kinetics are sluggish (even with H2 fuel cells)
- Cathode performance degraded by methanol crossover

• Membrane electrolyte
– Methanol is permeable through membrane
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Motivation for synchrotron studies

Develop methods for characterization of catalysts in fully 
operating fuel cells

• Nanoparticle structure during operation
• Surface chemistry
• Conditioning effects
• Degradation mechanisms

Initial experiments focus on anode
• Supported catalyst in hydrogen/air fuel cell (2001)
• Unsupported Pt/Ru catalyst in DMFC
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What do we know about the catalyst?

• Arc-melted alloys

• Nanoparticle catalysts

All catalysts are fcc
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Lattice parameters of nanoparticle catalysts

• Total pattern fitting

• Internal Si standard

• Accurate lattice parameters

• Particle size broadening

a = 3.883 Å
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fcc lattice spacings of catalysts and arc-melted alloys

FCC lattice parameter comparisons

Borohydride
reduction

Arc melted
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Pt/Ru Catalyst: Bifunctional Mechanism

Methanol Adsorption
Pt + CH3OH → Pt-(CH3OH)ads

C-H bond Activation
Pt-(CH3OH)ads → Pt-(CH3O)ads + H+ + e-

Pt-(CH3O)ads → Pt-(CH2O)ads + H+ + e-

Pt-(CH2O)ads → Pt-(CHO)ads + H+ + e-

Pt-(CHO)ads → Pt-(CO)ads + H+ + e-

Water Adsorption
Ru + H2O → Ru-OH +H+ + e-

CO Oxidation
Pt-(CO)ads + Ru-OH → Pt + Ru + CO2 + H+ + e-

Overall
CH3OH + H2O → CO2 + 6H+ + 6e-
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The X-ray absorption experiment

Double crystal
monochromator

Polychromatic
X-Rays

Monochromatic
X-Rays

Incident Flux
Monitor

Transmitted Flux
Monitor

Standard fuel cell

Io = Incident Flux
I  = Transmitted Flux
x = Sample Thickness
µ(E) = Absorption Coefficient at photon energy E
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Nafion 117
membrane

Graphite
block

Gasket Current
Collector

End Plate

X-Rays

Anode Catalyst Pt-Ru Cathode Catalyst Pd/C

ELAT GDL Flow Channel

Anode 
Gas Inlet

Cathode Gas
Inlet

Cathode Gas
Outlet

Anode Gas
Outlet

R. Viswanathan et al., J. Phys. Chem. B 106, 3458 (2002).
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Planning DMFC synchrotron experiments

• DMFC spectroscopy challenges
– Density fluctuations

• CO2 bubbles at the anode
• Flooding at the cathode

– Argonne safety requirements
• Solutions

– 35oC cell temperature
– Slight backpressure at the anode
– 4% H2 balanced N2 at the cathode
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Fuel cell

A C

4%
H2

MFC
Pump Anode Cathode

Potentiostat
- + PC

BPR

Fuel
exhaust 

Fuel
reservoir

Cathode
Exhaust

BPR : Back Pressure Regulator 
MFC : Mass Flow Controller

DMFC x-ray setup
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Experimental conditions

• DMFC
– Anode: PtRu (1:1)
– Cathode: Pd/C (30wt%)
– Cell temperature: 35ºC
– Fuel composition: (1) H2O, (2) 0.1M (3) 2M MeOH
– Cathode: 4% H2 balanced N2
– Potential vs DHS: 250mV, 300mV, 350mV, 400mV, 450mV

• In-situ x-ray absorption
– XANES and EXAFS data: Separately taken at Ru K and Pt L3 edges. 
– Absorption edge jumps: ∆µx = 0.05 for Ru and ∆µx = 0.17 for Pt.
– References: Pt foil, Ru metal, RuO2, RuO2-hydrate, as received PtRu
– Monochromator: Double crystal Si (111) 
– Harmonic Rejection Mirror: Pt for Ru edge, Rh for Pt
– Ion chamber detector gases: Incident beam; 80% He- 20% N2: 

Transmission; pure N2.



October 20, 2006 - NSLS

What is the interesting potential range?
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Experimental approach

• X-ray transmission 
experiments conducted in 
continuous scan mode, 
minimizing absorption 
transition effects.

• Enables > 85% use of 
data for averaging.

• Example of transitions in 
absorption due to density 
fluctuations (e.g. CO2)

• Note magnitude of Ru 
edge jump!
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XANES fitting
• Data were normalized and 

aligned using Athena. 
• Least squares fitting of Ru edges 

with Sixpack. 
• The standards for the least 

squares fits were RuO2-hydrate 
and Ru powder.
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RuO2-hydrate fraction by XANES
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Pt foil XAFS Analysis

Remove background

Fit with simple
model at multiple
k-weightings

k-weight = 3 k-weight = 1

XANES region

EXAFS region
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Pt EXAFS

• Potential dependent EXAFS at 0.1M. Pt 
EXAFS has excellent fit with a totally 
metallic environment. All data are nearly 
identical.  

• FT range for k space is 2 Å to 13 Å.
• Fit range for R space is 1.5 Å to 3 Å.
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Ru EXAFS Fitting

• Addition of Ru-O neighbors improves the EXAFS fit.
• The peak at about 1.3Å is ascribed to oxygen bound to Ru.
• The asymmetric distribution of the Ru-O peak is consistent with disorder
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Ru EXAFS

• Potential dependent EXAFS 
at 0.1M MeOH

• [MeOH] dependent EXAFS 
• Model fit at 350mV
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Metal cluster structural model

FCC structure, count first shell neighbors only from Pt and Ru edges
This only “sees” atoms in the metallic cluster

Average Coordination #’s
NRu

Pt = Pt around Ru
NRu

Ru = Ru around Ru
NPt

Ru = Ru around Pt
NPt

Pt = Pt around Pt
nPt = Pt coordination
nRu = Ru coordination

Fractional Coordination #’s
Y = Ru around Pt
X = Pt around Ru

Frenkel 1998, Shibata 2003
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[Pt]nPtN

BPt-Ru
Y =

[Ru]nRuN

BRu-Pt
X =

BPt-Ru = BRu-Pt
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Metallic nanoparticle structure
• First shell analysis

• Fit Pt and Ru EXAFS simultaneously at each potential. No potential 
dependence observed.

• Simultaneously fit Pt and Ru data at all potentials. Identical overall average 
coordination was observed.

• Use fractional coordination numbers, X (Pt around Ru) and Y (Ru around Pt) 
and total coordination number about each atom, n (Frenkel 1998, Shibata 
2003)

• Bond lengths and Debye-Waller factors are consistent with literature values 
for C supported Pt-Ru catalyst (Russel 2001, Camara 2002)

0.27 ± 0.02Y
0.54 ± 0.02X
8.2 ± 0.2n

= 0.5=
X
Y

[Pt]
[Ru]
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Apply model to as-received catalyst

Pt not simply metallic but 
has oxygen near neighbors

Ru shows large increase in 
number of oxygen near neighbors
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Catalyst structural changes

As received catalyst

• Ru oxidation ~58%
• N = 5.6
• [Ru]/[Pt] = 0.44
• Pt-O bonds present
• Ru-O bonds ~2.8 avg

In situ catalyst

• Ru oxidation ~15%
• N = 8.2
• [Ru]/[Pt] = 0.50
• No Pt-O bonds
• Ru-O bonds ~0.24 avg

S. Stoupin et al., J.Phys Chem B, 110, 9932 (2006).
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[Ru]/[Pt] = 35/65 = 0.54
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Possible Structural Model

FCC alloy phase with an amorphous Ru ghost phase

As received catalyst In situ catalyst

•Higher surface area may be critical in catalyst performance
•Incorporated O eases CO oxidation
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Conclusions

Metallic cluster of the catalyst nanoparticle
Composition is about 2:1 Pt:Ru 

Model fit suggests that the alloy is not totally randomized
(i.e. X ≠ .65 & Y ≠ .35)

Pt is metallic within the potential window (250mV and 450mV) in water or 
aqueous methanol.

Ru–O bonds are not potential or [MeOH] dependent (Rolison)
On the surface?

In a separate phase?

The potential transition point is not accompanied by ensemble changes at 
the surface.

Lots more to do!
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Extra bonus material

Another example of the kind of experiment which is well-suited to 
an undulator beamline.  Where the sample is damaged rapidly by 
the x-ray beam! 
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Dilute magnetic semiconductors

• Cations replaced by Mn, Co, Fe, etc. 
• Typical examples are: ZnO-Mn, CdS-Mn, ZnS-Mn, etc.
• Host s-p band ⇔ Mn2+ d electron exchange interactions
• Unusual magnetotransport and magnetooptical phenomena

Carrier induced ferromagnetism in InAs-Mn and GaAs-Mn

• DMS nanocrystals are unique systems
semiconductor confinement effects
magnetic properties
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Sample preparation and characterization

• Wet chemical synthesis starting with Mn-acetate and Zn-acetate. 

• Capping with polyvinylpyrollidone (PVP) results in smaller sized 
particles (5 nm or less) with uniform size distribution

• Bulk sample synthesized by annealing the powders at 1200°C for 
12 hours in air. The size of the bulk particles is ~1.5 microns.

• Size calculated using Scherrer’s equation and verified by TEM.

• The percentage of Mn doping in the samples was estimated by
EDAX and ICP-AES.

• Bandgap was measured by UV-VIS Absorption spectroscopy.

• Magnetic properties were measured by Electron Paramagnetic 
Resonance (EPR).
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XRD , UV-VIS and EPR results
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XRD shows formation of wurtzite nanocrystals 

Increase in the bandgap compared to the bulk, some variation with Mn 
concentration

EPR spectra from the doped samples exhibit well resolved hyperfine splitting 
of isolated Mn2+ ions, suggesting that Mn-Mn interactions are rather weak.
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Sample degradation of ZnO-Mn

Clear evidence of reduction of Mn with time exposed to x-rays
Observed with bending magnet beam too
Undulator quick scans can help!
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ZnO-Mn XANES

• Average valence 
state changes from 
bulk to nanoparticle 
sample

• Mn(II) dominates 
bulk sample

• Mn(III)-Mn(IV) 
dominates 
nanoparticle 
samples
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Mn replaces Zn in the bulk sample but not in the nanoparticle
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 Mn edge data:Bulk ZnO-Mn(1%)
 Zn edge data:Bulk ZnO-Mn(1%) 
 Mn edge data:Nano ZnO-Mn(1%)
 Zn edge data:Nano ZnO-Mn(1%)

k(
χ)
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EXAFS of bulk and nanoparticle ZnO-Mn(1%)

Bulk Zn and Mn spectra 
are similar

Nanoparticle Zn and Mn 
spectra are different 
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ZnO structural model
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Bulk samples fits

0 2 4 6 8 10 12 14
-6
-5
-4
-3
-2
-1
0
1
2

k2 χ
(k

)(Å
-2
)

 Mn edge data:Bulk ZnO-Mn(1%)
 Zn edge data:Bulk ZnO-Mn(1%) 
 Mn edge fit
 Zn edge fit

 

k (Å-1)

0 2 4 6 8 10
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Bulk Zn Data and Fit

Bulk Mn Data and Fit

 

 
M

ag
 o

f F
T 

(k
w

 =
 2

)

R (Å)

0 2 4 6 8 10

-3

-2

-1

0

1

Bulk Zn Data and Fit

Bulk Mn Data and Fit

 

R
ea

l P
ar

t o
f F

T 
(k

w
 =

 2
)

R (Å)

Bulk Mn and Zn spectra sets were 
simultaneously fit in R-space

No question that Mn substitutes for Zn in 
bulk
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Fit results for bulk ZnO-Mn
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• Model simultaneously optimized to both data sets with 
common parameters 

• The model can describe the features of both data sets 
simultaneously. 

• The σ2 values and distances are the same for the Mn edge and 
the Zn edge spectra

• The same model was applied to the Zn and Mn spectra from 
the nano sample, but was not successful in reproducing both 
spectra.
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Nanoparticle XAS 

23 ± 5 %17 ± 4 %16 ± 5 %28 ± 6 %Mn2O3

57 ± 4 %64 ± 3 %60 ± 4 %57 ± 4 %Mn3O4

19 ± 2 %19 ± 2 %29 ± 3 %14 ± 3 %MnO2

2 ± 2 %0 %3 ± 2 %2 ± 2 %ZnO-Mn1% BULK
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Summary: DMS nanoparticles

• XANES results suggest that the valence state of the 
nanoparticle samples is very different than that of the bulk 
sample 

• EXAFS results show that Mn atoms replace Zn atoms in 
the bulk ZnO-Mn.

• Nanoparticles (4.7 nm) of ZnO-Mn with Mn doping varying 
from 0.5% to 5%, appear to be in core-shell structure with 
Mn located on the surface

• The shell consists of various oxides of Mn.
• Preliminary analysis on CdS-Mn indicates same core-shell 

structure and radiation damage similar to ZnO-Mn


